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PROGRESSIVE COLLAPSE OF RIGID-PLASTIC
CIRCULAR FOUNDATIONS

By George Gazetas, A. M. ASCE

Asstract: The paper presents an analytical study of the behavior of a rigid-
perfectly plastic circular foundation plate indenting an elastic two-parameter
soil layer (Vlasov soil) under the action of a statically increasing applied load.
Closed-form solutions are obtained for critical loads, maximum surface set-
tlements, foundation deflections and soil reactions in terms of the load inten-
sity, after the plate has been transformed into a mechanism. Two distinct
phases of metaplastic behavior are identified depending on whether or not full
contact is maintained between soil and foundation. The results are compared
with those obtained for a Winkler space and an elastic continuum halfspace.

INTRODUCTION

The interaction between foundations and supporting soil media has been a
subject of keen interest to both geotechnical and structural engineering for a long
time. In recent years, solutions to various problems of beams, plates, and shells
continuously supported by deformable media have also been in great demand in
other branches of engineering, as, e.g., aerospace and mechanical engineering
(10,17). Since a complete analysis of such an interaction problem is a formidable
task, the interest of engineers has usually been restricted to predicting stresses
and displacements in the structural foundation and contact stresses at the soil-
foundation interface.

A variety of theoretical formulations can be employed in the investigation of
such interaction phenomena. The usual approach is based on the inclusion of the
soil reactions into the corresponding differential equation of the beam, plate, or
shell. Since these reactions depend on the complicated behavior of the soil me-
dium, their determination constitutes the primary difficulty of the problem. In
practice, when designing relatively unimportant structures, this difficulty is
overcome by adopting an arbitrary simplification, e.g., assuming that the contact
pressure is linearly distributed over the soil-foundation interface. This assumption
in essence ignores the existence of the problem since it does not account for the
compatibility of deformations between soil and structures; it will not be further
addressed in this paper.
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The simplest representation of a continuous soil medium has been proposed
by Winkler (21) who described the soil as a system of continuously distributed
independent linear springs which offer resistance in the direction of their axis
only. A rigid foundation carrying a load on such a medium will be resisted by
uniform contact stresses, while the settlement of the soil surface outside the
loaded region remains equal to zero. On the other hand, the soil was considered
as a semi-infinite linearly elastic continuum, a mathematically much more dif-
ficult problem. A number of solutions are available in the literature for an iso-
tropic or an anisotropic continuum (6,7,16,17). Although such a representation
constitutes an improvement over the Winkler model, in that it allows estimation
of the spatial distribution of stresses and displacements within the soil, it is by
no means an exact description of reality; e.g., it predicts surface displacements
away from the loaded area that decrease much slower than actual observations
show.

To bridge the gap between these two extreme cases, a number of soil models
has been developed either by asuming some kind of interaction between the
springs of the Winkler base or by introducing simplifying assumptions with re-
spect to expected displacements and stresses in the elastic continuum; Kerr (10)
and Selvadurai (17) have presented comprehensive critical reviews of various
proposed soil models.

An interesting model has been advocated by Vlasov (18) who approached the
problem from a ‘‘continuum’’ point of view, imposing certain reasonable re-
strictions upon the possible deformations of an elastic layer and using a vari-
ational method to derive governing differential equations of a variety of soil-
structure interaction problems. In its simplest (and most popular) form, Vlasov’s
model involves two parameters. In many cases, it is believed (17) that it can
simulate certain aspects of the behavior of soil-foundation systems more real-
istically than the other two soil models (Winkler base and elastic continuum)
and, above all, it leads to significantly simpler solutions than those of the theory
of elasticity. This explains the wide application of the model, as evidenced by
studies published in this country (8,20,22). The scope of the present paper is
to employ the two-parameter version of Vlasov’s model to study the post-plastic
behavior of circular plate foundations supported by a single soil-stratum on rigid
rock.

In order to better utilize the material strength and to meet the growing needs
of increasing loads, it is universally accepted that plastic or ultimate strength
methods of design be used in preference to elastic methods. Thus, application
of the plastic theory of structures in the design of foundations has been a subject
of engineering interest over the last years (1,4,5,12,13,14,15,23,24,25). It has
been shown (4) that plastic theories not only lead to simpler methods of analysis,
but, moreover, they give results which are more reliable and less sensitive to
the exact contact stress distribution than those of the elastic theories.

Zingone, in a series of publications (23,24,25) investigated the collapse load
of rigid-plastic foundation plates on a plastic Winkler-type soil; i.e., he assumed
that both structure and soil are in a state of plastic equilibrium. Along the same
lines, Meyerhoff and Rao (14) empirically combined the theoretical collapse load
of a rigid-plastic footing on elastic Winkler base with the soil-failure load from
bearing capacity theory to estimate the collapse load of a plastic foundation on
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plastic soil. Since, however, soil is a more unreliable material than either con-
crete or steel, it should be assigned a higher safety factor. Thus, at the time of
collapse of the structural component of a footing, soil pressure will, in general,
be much lower than the ultimate bearing capacity of soil. This philosophy under-
lines the published studies of foundation collapse on elastic supporting soil
1,3,4,12,13,15).

The present paper describes an analytical method to study the behavior of a
rigid-perfectly plastic circular foundation plate indenting a two-parameter foun-
dation soil under the action of a slowly incrementing externally applied load.
Closed-form solutions are obtained for the maximum settlement, the shape of the
deformed surface, and the soil reactions, in terms of the applied load, after the
foundation slab has been transformed into a mechanism. Two distinct phases of
‘‘meta-plastic’’ foundation behavior are identified, depending on whether or not
full contact is maintained between structure and soil. It is shown that beyond
a critical load the foundation lifts off the ground and strong geometric nonlin-
earities are observed. ‘‘Transversality’’ conditions for determining the size of
the contact area are developed, and the rate of slab deflection is graphically
demonstrated. The results are compared with those obtained for a Winkler base
(4) or an elastic continuum (12).

Two-ParamMeTER Soi. MobeL

A uniform soil layer of thickness H underlain by rigid rock and subjected to
vertical axisymmetric loading at the surface is considered (Fig. 1(a)). If the ver-
tical and horizontal displacements, w(r,z) and u(r, z), can be found at ali points
in the layer, stresses and strains will be obtained from established stress-strain
and strain-deformation relations of the theory of elasticity. In problems, such as
the analysis of soil-foundation interaction, horizontal displacements, u(r, z), may
be considered of negligible magnitude in comparison with vertical displacements.
Then, in order to obtain an approproximate solution, the unknow function w(r, z)
is expanded in finite series:

W 2) = D WPV B(2) oo (1)
i=1

in which the dimensionless functions, ,(z), assumed to be known, represent the

distribution of vertical displacements with depth from the surface, while the un-

known functions, W(r), represent, in essence, the settlement of the surface. For

a single uniform layer, Eq. 1 can be further simplified to

W(r,2) = W) R(Z) oo )

since a single function, A(z), can be found to describe with sufficient accuracy
the variation of vertical displacements and normal stresses with depth; e.g., in
a relatively shallow layer loaded by a large circular foundation, e.g., R/H = 1,
vertical normal stresses and strains are nearly constant, and, therefore, the dis-
placements w decrease linearly with depth. Thus a function
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will adequately describe the true variations of w, €,, and o, in the z direction.
In a deeper layer, e.g., R/H < 1/2, the variation of stresses, strains, and
displacements can be described by a function
H -
sinh A R 2
e e ke e R A R IS G R B R 4
o= ——% “)
sinh A &

in which the parameter \ determines the rate of decrease of displacements with
depth and can be selected for each particular problem on the basis of experimental
or published theoretical data of normal stress distributions (16).

Using Langrange’s principle of virtual displacements and the elastic stress-
strain-deformation relations with the displacement of all points expressed by Eq.
2, the equilibrium equation of the soil layer subjected to an axisymmetrically
distribution load, g(r), on the surface (Fig. 1) is obtained (p. 39 of Ref. 18):

r

h(0)=1

R
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FIG. 1.—Single-Layer Two-Parameter Soil Model and Vertical Displacement Distribu-
tion Function
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FIG. 2.—Yield Criterion of Foundation Plate
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=2t V’W(r) + k W(r) = q(r)

in which V? = il L4 )
TR e
is the Laplace operator in cylindrical coordinates, and
H 2 H
k=D f [fi—h-(f—)-] dz; t= g f R2¥dz oo (6)
A dz 2 ),

are the two elastic parameters of the foundation, with D and G = the constrained
and shear modulus of soil, respectively. It is seen that the two parameters, here-
after referred to as dilatational and shear parameters, depend on the selected
vertical displacement function, h(z). Appendix I shows the expressions k and ¢
corresponding to displacement functions described by Egs. 3 and 4.

FounpaTion, Loaping, ANp PHases oF DerormaTION

A thin rigid-perfectly plastic circular foundation plate rests on the surface of
a two-parameter soil layer. The interface between foundation and soil is assumed
to be frictionless (‘‘smooth’’ or ‘‘relaxed’’ boundary), and the plate material
obeys the square yield criterion of Fig. 2 with the associated flow rule.

A uniformly distributed load is slowly applied over a small circle of radius,
C, concentric with the foundation plate so that axial symmetry is preserved.
Thereafter, the load is gradually incremented, and the plate is driven into the
soil layer as a rigid flat indenter until fully-plastic radial moments are realized,
and a plastic mechanism develops in the plate. With further increase of the load,
the plate deforms into a conical surface, but no sudden failure is observed; i.e.,
although the external forces continue to increase, equilibrium is maintained be-

PHASE 1

sy | mwmy e

PHASE 11

g
i
i
i
PHASE 111 |
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FIG. 3.—Three Phases of Deformation of Rigid-Plastic Circular Foundation
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cause soil reactions also increase. At a certain level of the load intensity, a change
in the geometry of the soil-foundation interface takes place, as the foundation
lifts off the base. Thereafter, the rate of settlement under the applied external
load grows rapidly until, eventually, the foundation ‘‘sinks’’ into the ground.
The interest of the paper is to study this ‘‘progressive collapse’’ by developing
analytical expressions relating foundation settlement and soil reactions to any
applied total external force. For reasons of clarity of the presentation, three dis-
tinct phases of foundation deformation are identified, as portrayed in Fig. 3:

1. For small values of the external load, P < P,, the bending moments that
develop in the foundation plate are smaller than the corresponding plastic mo-
ments, m, or m,. Therefore, no yielding takes place, and the foundation pene-
trates the soil layer as a rigid punch (Phase I).

2. Beyond a critical threshold value of the load, P,, [named after Augusti
(1], an infinite number of radial yield lines develop, and the plate deforms into
a conical shape. Full contact is maintained between foundation and soil during
this phase (Phase II).

3. Beyond a certain value of the load, P,, named separation load by Krajci-
novic (12), the foundation lifts off the soil as the center of the plate is driven
further into the ground, while the edges move upward (Phase III).

Governing EaquaTions anD SoLuTion

Constant Contact Area (Phase II).—Two different regions can be distin-
guished in this case, one under and one beyond the foundation. Let W, and W,
= the (unknown) settlements in the two regions (measured from the original
ground surface), and W, = the settlement of the foundation center. By Eq. 5,
the two differential equations governing the spatial variation of W, and W, are

AW, ladw, ., o,/
at 0<r=R: ) ;jd‘;— oW, = T .................... (@))
R=r< W, 22 9 W, =0 8
= el = = e R L 1T LI T I Lr T
at r CE Ty AW (®)

in which o,(r) = the unknown as yet contact stress distribution at the foundation-
soil interface; and o> = k/2¢. Egs. 7 and 8 express in an integral form the equi-
librium conditions for the soil. The governing equation for the foundation struc-
ture can be conveniently derived using the principle of virtual work. Allowing
the slab mechanism to deflect a virtual displacement such that the center moves
an arbitrary distance, e.g., unity, the internal and external works are estimated
and equated. This leads to

R
2mm, = P<1 - % B> - 2wjo o, (r) r(l - é)dr ...................... ©)

in which B = ¢/R and P = pmc® = total applied load.
Egs. 7-9 constitute a system of three differential-integral equations with three
unknowns (W,, W,, and ¢,). Eq. 8 can be directly solved for W,:
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Wo(r) = CK (ar) + C'L(0r) .o e (10a)

in which K, and I, = the modified Bessel functions of order zero, second and
first kind, respectively [see Watson (19)]. Since W, must vanish at infinity, C'
=0; I, > © as r — . Thus

To integrate Eq. 7 we observe that, due to the rigid-plastic behavior of the
plate, W, can be expressed in terms of W, and the slope 6 of the deformed
foundation:

W= W= OF oo (11)

Introducing Eq. 11 in Eq. 7 yields the form of the contact stress distribution:
216

O (N = kW, + — —kBr ... (12)
r

which, upon substitution in Eq. 9, results in
2B TkW_R* kR?
1—? P =2mm, + 3 + mR 2t—?9 ................... (13)

which, for a given plastic moment of the foundation, m,, relates the applied load,
P, to the resulting deformations W, and 6.

In addition to the distributed soil reactions against the foundation that are de-
scribed by Eq. 12, fictitious reactions, Oy, per unit length act along the contour
of the circular plate. These are due to the deformations of the soil beyond the
plate region, and correspond to the infinitely large stresses beneath the edges of
rigid foundations predicted by the theory of elasticity for a semi-infinite contin-
uum (Ref. 16, p. 166). To see how they are ‘‘created,’’ consider an infinitesi-
mally thin hollow cylinder of soil with height, H; internal radius, R — f; and
external radius, R + f in which f — 0. The condition of equilibrium can be
written by equating to zero the total work done by all forces acting on the cylinder
for a virtual displacement, dw(r,z) = h(z):

H 2w H 2w
27R - Q; h(o) + f J hz) 1@ (R + fdbdz — f J h(z) -7
0 0 0 0

TR=f)dddz =0 ... (14)

in which the shear stresses 7}’ and 17, corresponding to the two regions of Fig.

3(b), are obtained from the elastic relation 7,, = G(dw/dr) and Eq. 2. Substitution
in Eq. 14 and integration yields the fictitious force:

0 _2t<dW1 dW2>
3 dr ar ], _«

Thus, Oy is caused by the different slopes of the settling surface at the edge of
the foundation, and the ability of the soil to take up shearing stresses.
The boundary conditions of the problems can now be stated as follows:
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WUR) = WaR) oo oottt e (16)

R
P=2m J- G Nrdr+ 2RO, oo a7
0

and the system of six equations (Egs. 10b, 12, 13, 15, 16, and 17) can be
analytically solved for the six unknown quantities, W,, C, W, 6, Oy, and o,.

After some lengthy but straightforward algebraic operations, the following
closed-form relations are derived:

P§ 2m,
=\—- O
W, (k’rrRz kR2> (18a)
_ (@R?
ith =1 . + 2 18b
with &= 3 B TR RS (18b)
8
= 18
=D G+ (159
6 (aR)?
_ K,(aR) )
and g—2 1+3m, .................................. (18d)
B 1+gWwW, 3 P i8
= P ? g TmRD (19)
W, — 6R
W, = WKO(OU'); -t - < T L LT (20)

Eqgs. 18-20 can be used to compute the deformation of the soil surface for any
applied load, P, given the moment capacity of the plate, m,, and provided

The contact stress distribution o,(7) is then obtained from Eq. 12 after substituting
the computed values of W, and 6.

Threshold Load.—The load, P,, required to transform the foundation plate
into a mechanism and, thus, bring it into the second phase of deformation is
obtained by setting 8 = O in the previous relations. Calling W, the threshold
settlement of the plate at this particular load, W, = W, = W, Egs. 18 and 19
yield

3w

L <
o 0.5 o

1.5-8 -
P K (k)
oRK (aR)
for the threshold load, and
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W= ! 23
== RI@R) . o (23)
(kmR?) aRK (aR)

for the threshold settlement. It is quite interesting to compare the above expres-
sions for P, and W, with those resulting from the alternate soil models described
in the introduction, namely the Winkler model and the continuum model. Gazetas
and Tassios (4) have obtained P, of a plate on Winkler soil:

3m
Potian, = T—p M, cssmimsmemenos S5 Ee B HIBE0sNINIE SpoaNIRERNIDEs (24)
while Krajcinovic (12) reported for a semi-infinite continuum
37
P s = TS, e bR 6 AR R IR IR SR E R (25)
'continuum 1 i 18 —_ B

Fig. 4 portrays the reduced threshold load, P,/m,, predicted from Egs. 22, 24,
and 25, as a function of the reduced radius of loading, 8. Since a in Eq. 22 is
a function of the relative thickness, H/R, of the soil layer, the empirical param-
eter, N\, and Poisson’s ratio, v, of the soil, a family of curves is displayed in this
figure for the presented soil model. H/R ranges from 1-4, \ from 1-2 while v
= 0.30. Only a single curve is obtained for the Winkler soil or the half-space
continuum. The agreement of the three models ranges, in general, from satis-
factory at low [ ratios, i.e., for nearly concentrated load, to rather poor at very

/WINKLER MEDIUM WITH MODULUS k

VLASOV  MODEL
HWINKLER 1]

CONTINUUM

or LTI

VLASOV

CONTINUUM
LAYER

2+ —-— = VLASOV
MODEL

=

FIG. 4.—Comparison of Reduced FIG. 5.—Comparison of Dimensionless
Threshold Loads and Corresponding Maximum Settlements from Three Soil
Contact Stress Distributions from Three Models

Soil Models
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high B ratios, i.e., for uniform applied pressure over almost the whole foundation
area. Notice, however, that the presented (Vlasov, Ref. 18) model leads to
threshold loads that are much closer to those predicted for a continuum through-
out the range of B. In fact, Eq. 25 plots almost in the center of the band com-
prising the curves of Eq. 22.

These similarities and discrepancies among the three models can be qualita-
tively explained if one considers the three corresponding contact stress distri-
butions, shown also in Fig. 4. It is obvious that the concentrated forces, Q;, at
the contour of a plate pushed into a Vlasov soil and the infinite stresses at the
edges of a rigid circular slab supported by an elastic homogeneous half space
produce higher bending moments and, thus, transform the foundation into a
mechanism faster, i.e., at a smaller load, than the uniform reactions of a Winkler
soil.

Fig. 5(a) displays W, as a function of the reduced thickness H/R. The various
curves were computed from Eq. 23 for v = 0.3, 0.4 and three different values
of N (1, 1.5, and 2). Also shown for comparison is the normalized threshold
settlement of a Winkler soil characterized by a constant subgrade modulus taken
equal to k. The discrepancy of the two theories is small for very shallow layers,
but rapidly increases to approx 30—60% (depending on the choice of \), as soon
as H/R exceeds 1.5-2.0. Notice, though, that for the Vlasov model, k is not
constant but varies with H/R (Appendix I).

To compare with the threshold settlements of an elastic continuum, it is con-
venient to define

in which D = E(1 — v)/[(1 + v)(1 — 2v)] is the constrained soil modulus. For
the Vlasov model (Eq. 23), W increases with H/R and v, as shown in Fig. 5(b).
For an elastic finite continuum having the same E and v, exact analytical solution
for W, does not exist. Recently, Kausel and Ushijima (9), on the basis of ex-
tensive finite-element analyses, suggested that W, can be obtained with very good
accuracy from

-1
P,(1-1% R
o BN 4 L B AG] e ihas SRR 2
Wo 2ER <1 12811) @7

W, obtained from Eq. 27 is also plotted in Fig. 5(b) for three values of Poisson’s
ratio, v = 0.3, 0.4, and 0.45. The discrepancy of the two models increases with
layer thickness and Poisson’s ratio. In fact, the two-parameter model predicts
W,, which only slightly changes with v, whereas for the elastic continuum, v
is a critical parameter. The phenomenon is quite understandable, in view of the
significant lateral displacements that develop according to the theory of elasticity
in the soil as v — 0.5, especially for large H/R ratios. Such lateral displacements
are not allowed in the two-parameter model which, consequently, behaves as a
stiffer medium.

Lifting-Off Phase.—Since no tensile stresses can develop between foundation
and soil, beyond a critical load, P,, the foundation lifts off the ground as is
shown in Fig. 3(b). Problems of similar nature, involving boundaries with vari-
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able geometry, lead to nonlinear force-deformation relations. Studies accounting
for the lift-off of beams or plates supported on a continuous base have been
published for both elastic (2,11) and plastic (4,12,23,24,25) structures. A com-
plete solution must yield not only foundation settlements and soil reactions but
also ‘‘transversality’’ conditions for locating the position of the variable contact
surface. In our case, due to axial symmetry, the latter requirement is translated
as ‘‘determination of radius d’’ (Fig. 3(c¢)).
Egs. 7, 8, and 11 are obviously still holding true, while Eq. 9 changes to

d
2 r
2mm, = P(l ~3 B> = 21'rJO a,(r) r(l = ﬁ) ar ..o (28)

and Eq: 16to Wi@) =Wiuld) i cusmimimsmsnimsnsnesbsasssasnsnia (29)

in which W, = soil displacements beyond the contact area. Because of the nature
of the two-parameter soil model, however, there seems to be some difficulty in
formulating the additional needed boundary condition for the variable ‘‘free’’
edge of the foundation. In fact, Chernigovskaya (2) committed a serious error.
Chernigovskaya studied the lifting off elastic foundation elements supported on
‘‘Pasternak’’ soil, whose governing differential equation is of the same form as
Eq. 5 of the ““Vlasov’’ model (10,11,16). There (2), it was stated that the dis-
tributed reaction stress, o,, must vanish at » = d. Although this seems to be
intuitively true (and it is true for a Winkler base or an elastic continuum), it is
not so with this soil model (as well as with that of Ref. 2). It can be easily seen
from Eqgs. 2 and 3 or 4, for example, that the model predicts nonzero normal
vertical stresses even at points on the foundaion surface which carry no load.
This is a result of employing the variational method, which applies the equilib-
rium conditions in integral form without providing for their fulfilment at every
single point of the system. Instead, the correct boundary condition at r = d is

O =0 (30)

which is equivalent to stating that the slope of the deformed surface is continuous
at the separation point of plate and soil. Note that Kerr (11) utilized a variational
principle to rationally formulate the differential equation and mathematically
well-posed boundary conditions (including the ‘‘transversality’’ condition) of a
beam lifting off a ‘‘Pasternak’’ base. He also found that ‘‘at the separation point
of beam and . . . layer there is no concentrated reaction force’” (11).

Finally, Eq. 17 changes to

d
P = 21Tf GFAr 36 minwisimr o s mes 55 0EEE3E 50 M a5 80w amss 31
0

and the new set of equations can be solved for W, 6, and o,, in terms of the
‘‘contact’’ radius, d. The ‘‘transversality’’ condition (Eq. 39) is then used to
determine d for each particular intensity of the applied force. After some lengthy
but straightforward algebraic operations one arrives at

2
P R —
w,.= W <E> (1 + ab) L i i e e e s (32a)
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K (ad)
2ad —+—=
. _ K, (ad) _ 1 l
with a = ——-————-1 o K (ad) and b —(a dF T3 (32b)
**K (ad)
0=—W 33
= Ve e (33)

and o,(r) is given by Eq. 12. The ‘‘transversality”’ condition is

P 127
e e Bamym e BTSRRI (4

in which F(a,d) = <6 — 2a + 6a(ad)™?

—[4 - 1.5a + 3a(ad)™*] %) (L @B s s e (35)

For any applied load, P = P,, and knowing the plastic moment of the plate,
m,, Eq. 34 yields by trial and error the “‘contact’’ radius, d. Egs. 32, 33 and
12 will then fully specify the surface settlement, the foundation distortion, and
the soil reactions.

To determine the ‘‘separation’ load, P,, it is sufficient to set d = R in Egs.
32, and 34. It is interesting to compare this load with the corresponding sepa-
ration loads of a foundation on a Winkler base (4) or an elastic continuum (12)

_ 127m, _ 12mm,
PJWinklex = 3= 4B; oo ;—_—46 ..............................

Fig. 6 compares the three reduced separation loads, P,/m,, portrayed as functions
of B. The agreement between all of them is excellent, especially in the low 8
range (nearly concentrated loads). This is hardly surprising in view of the similar
contact stress distributions predicted by the theories and shown also in Fig. 6.
Note also that, as it can be confirmed with Egs. 36 (or Fig. 6), no separation
can occur if

B =0.75 — 0.80

i.e., with such a large loading area, the slab will never loose contact with the
soil. On the other hand, for a concentrated load, i.e., B = 0, the separation load
is only about 50% larger than the threshold load, irrespective of soil model.

The same excellent agreement is also observed with regard to the geometry
of the contact area during the lifting-off phase, as predicted by the three men-
tioned theories. In essence, the reduced radius of contact, y = d/R, is a unique
function of P/P,, irrespectively of soil model as Fig. 7(a) demonstrates.

However, some discrepancies exist among the surface settlements and slab
deflections of the three theories. Fig. 7(b) displays in dimensionless form the
evolution of the maximum surface settlement, WC, and the slab deflection, Vc.
The latter is obtained from
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FIG. 6.—Comparison of Reduced Sepa- FIG. 7.—Evolution with Applied Total
ration Loads and Corresponding Contact Load Of: (a) Soil-Foundation Contact
Stress Distributions from Three Soil Area; (b) Maximum Surface Settlement
Models and Foundation Deflection
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V.= 6R Pttt 37

in which 8 is given by Eq. 33, and D = the constrained soil modulus. It is seen
that below the threshold load V, = 0, since up to that point the slab behaves as
arigid body. Thereafter, V, grows at a much faster rate than W,, as the foundation
edges move upward under the influence of the soil reactions. Eventually, when
P = 1.22P_, V_ exceeds W, while the radius of the contact circle, d, decreases
below 0.82R. Although the deformational behavior of the ‘‘collapsing”’ foun-
dation on a continuum half space (12) is qualitatively similar with the one de-
scribed previously, the predicted rate of increase of both W, and V, is a little
faster (Fig. 7(b)). Note also that the Winkler model (4) leads to even larger
values of these deformation quantities (not plotted in Fig. 7(b)).

One can easily explain why the present theory, which assumes ‘*Vlasov’’ soil,
slightly underestimates the settlements ‘‘observed’’ on an elastic continuum half-
space: a cone penetrates the half space by laterally displacing the surface soil,
rather than by compressing it. ‘“Vlasov’’ soil, however, is effectively very stiff
in the lateral direction and the only displacements that are ‘‘observed’’ are due
to one-dimensional volumetric compression. The importance of such displace-
ments diminishes as the contact area decreases and the cone becomes sharper.

Actual soils exhibit deformational anisotropy, being usually stiffer in the hor-
izontal than the vertical direction (5,6). Consequently, one should expect the
meta-plastic behavior of a foundation on actual soil to be something in between
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the predictions based on these two idealizations. Moreover, local yielding of soil
is another important phenomenon at such extreme cases of deformation, and its
proper evaluation is necessary for a more accurate prediction of foundation
response.

Summary AND CONCLUSIONS

The paper has presented an analytical study of the metaplastic response of an
initially rigid circular foundation pushed into an elastic soil layer by a statically
incrementing applied force. The soil is modeled as a two-parameter medium
(Vlasov model) and closed-form expressions of pertinent response quantities are
obtained by solving the governing differential equations while satisfying the well-
posed boundary conditions. Two distinct phases of deformation are indentified.
Beyond a critical, threshold load, P,, the slab transforms into a mechanism
through an infinite number of radial yield lines and deforms into a conical sur-
face. No sudden failure is observed, as the load increases further, thanks to the
also increasing soil resistance. When another critical load, P, = 1.50 P,, is ex-
ceeded, the distortion of the foundation plate becomes such that its edges lift off
the ground. The subsequent settlement increases faster than the load (geometric
nonlinearity), and it is felt that a prudent design should not allow such defor-
mations to take place.

Expressions for the critical loads, maximum surface settlements, foundation
deflections, and soil reactions are given as functions of load intensity for all
phases of deformation. Extensive comparisons are made with results of two sim-
ilar studies of collapsing foundations on elastic soil, modeled as a Winkler base
(4) or as a continuum half space (12). It is concluded that good to excellent
agreement exists with respect to the loads predicted by the three theories, es-
pecially the one presented here and that of Ref. 12 (continuum half space). How-
ever, some discrepancies are observed in the predictions of settlements and de-
flections, especially at the lifting-off phase. They are attributed to the large lateral
deformations of the continuum which are expected to increase as Poisson’s ratio
approaches the limiting value of 1/2.

The method presented is believed to be useful in analyzing or designing mat
foundations, and its extension to other foundation geometries seems feasible.

Appenpix |.—SoiL PARAMETERS

For the displacement distribution function, A(z), given by Eq. 3 the two elastic
parameters are (18):

D E(1-v) GH EH

=T HEO A=) T 6 120 +v)

and for h(z) given by Eq. 4:
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